Full metadata
Title
A Study of Factors Affecting the Safety and Efficacy of Neuromodulation Devices
Description
Safety and efficacy of neuromodulation are influenced by abiotic factors like failure of implants, biotic factors like tissue damage, and molecular and cellular mechanisms of neuromodulation. Accelerated lifetime test (ALT) predict lifetime of implants by accelerating failure modes in controlled bench-top conditions. Current ALT models do not capture failure modes involving biological mechanisms. First part of this dissertation is focused on developing ALTs for predicting failure of chronically implanted tungsten stimulation electrodes. Three factors used in ALT are temperature, H2O2 concentration, and amount of charge delivered through electrode to develop a predictive model of lifetime for stimulation electrodes. Second part of this dissertation is focused on developing a novel method for evaluating tissue response to implants and electrical stimulation. Current methods to evaluate tissue damage in the brain require invasive and terminal procedures that have poor clinical translation. I report a novel non-invasive method that sampled peripheral blood monocytes (PBMCs) and used enzyme-linked immunoassay (ELISA) to assess level of glial fibrillary acidic protein (GFAP) expression and fluorescence-activated cell sorting (FACS) to quantify number of GFAP expressing PBMCs. Using this method, I was able to detect and quantify GFAP expression in PBMCs. However, there was no statistically significant difference in GFAP expression between stimulatory and non-stimulatory implants. Final part of this dissertation assessed molecular and cellular mechanisms of non-invasive ultrasound neuromodulation approach. Unlike electrical stimulation, cellular mechanisms of ultrasound-based neuromodulation are not fully known. Final part of this dissertation assessed role of mechanosensitive ion channels and neuronal nitric oxide production in cell cultures under ultrasound excitation. I used fluorescent imaging to quantify expression of nitric oxide in neuronal cell cultures in response to ultrasound stimulation. Results from these experiments indicate that neuronal nitric oxide production increased in response to ultrasound stimulation compared to control and decreased when mechanosensitive ion channels were suppressed. Two novel methods developed in this dissertation enable assessment of lifetime and safety of neuromodulation techniques that use electrical stimulation through implants. The final part of this dissertation concludes that non-invasive ultrasound neuromodulation may be mediated through neuronal nitric oxide even in absence of activation of mechanosensitive ion channels.
Date Created
2022
Contributors
- Voziyanov, Vladislav (Author)
- Muthuswamy, Jitendran (Thesis advisor)
- Smith, Barbara (Committee member)
- Greger, Bradley (Committee member)
- Abbas, James (Committee member)
- Okandan, Murat (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
175 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171934
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Biomedical Engineering
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 11 months ago
Additional Formats