Full metadata
Title
Landscape Evolution in Response to Dynamic Coastal Dune Restoration: Case Studies from the California Coast
Description
Anthropogenic activities have had a profound effect on ecosystems, sediment budgets, and dust emissions stemming from widespread changes in land use and land cover and increases in sediment disturbance. Sandy coastal environments are under increasing pressure from the impacts of rising sea levels, coastal flooding, and erosion. Coastal foredunes can serve as a buffer to protect coastal communities from the impacts of coastal erosion, flooding, and sea-level rise. They also serve an important role as an ecosystem service, providing opportunities for recreation (off-highway vehicle, hiking, tourism) and habitat for native and endemic biota. Increased disturbance and pressure by human activity within the beach-dune system can lead to a decoupling of form and function from natural geomorphic and biotic processes. Dune management and restoration is often employed to mitigate some of the aforementioned pressures. Dynamic or ‘nature-based’ restoration aims to restore the form and function of a geomorphic system and improve landform resilience to external pressures by employing complimentary native plant species. This type of approach places emphasis on the ecological and geomorphic interactions within a landscape to improve the overall function and resiliency of the system to external pressures. Two case studies along the coast of California, the Lanphere Dunes and Oceano Dunes, provide uniquely different approaches to foredune restoration and the corresponding issues of landscape management for various goals. The case studies provided employ a suite of close-range remote sensing techniques, including kite aerial photography, uncrewed aerial systems photography, and terrestrial laser scanning, to generate high resolution (< 0.1 m) products (surface models; orthophoto mosaics in red-green-blue (RGB) and multispectral) to quantify and inform on restoration efforts by examining sediment budget and vegetation characteristics over a mesoscale (spatial and temporal). Results were compared to a variety of control sites (e.g., no restoration, natively vegetated, invasively vegetated) to highlight the differences between restored and unrestored landscapes, and the efficacy of restoration efforts for improving the developmental trajectory of a landscape towards a "desired" state.
Date Created
2022
Contributors
- Hilgendorf, Zach (Author)
- Walker, Ian J (Thesis advisor)
- Dorn, Ronald I (Committee member)
- Schmeeckle, Mark W (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
172 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171907
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Geography
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 11 months ago
Additional Formats