Full metadata
Title
Modeling the Dynamics of Heroin and Illicit Opioid Use Disorder, Treatment, and Recovery
Description
A leading crisis in the United States is the opioid use disorder (OUD) epidemic. Opioid overdose deaths have been increasing, with over 100,000 deaths due to overdose from April 2020 to April 2021. This dissertation presents two mathematical models to address illicit OUD (IOUD), treatment, and recovery within an epidemiological framework. In the first model, individuals remain in the recovery class unless they relapse. Due to the limited availability of specialty treatment facilities for individuals with OUD, a saturation treat- ment function was incorporated. The second model is an extension of the first, where a casual user class and its corresponding specialty treatment class were added. Using U.S. population data, the data was scaled to a population of 200,000 to find parameter estimates. While the first model used the heroin-only dataset, the second model used both the heroin and all-illicit opioids datasets. Backward bifurcation was found in the first IOUD model for realistic parameter values. Additionally, bistability was observed in the second IOUD model with the heroin-only dataset. This result implies that it would be beneficial to increase the availability of treatment. An alarming effect was discovered about the high overdose death rate: by 2038, the disease-free equilibrium would be the only stable equilibrium. This consequence is concerning because although the goal is for the epidemic to end, it would be preferable to end it through treatment rather than overdose. The IOUD model with a casual user class, its sensitivity results, and the comparison of parameters for both datasets, showed the importance of not overlooking the influence that casual users have in driving the all-illicit opioid epidemic. Casual users stay in the casual user class longer and are not going to treatment as quickly as the users of the heroin epidemic. Another result was that the users of the all-illicit opioids were going to the recovered class by means other than specialty treatment. However, the relapse rates for those individuals were much more significant than in the heroin-only epidemic. The results above from analyzing these models may inform health and policy officials, leading to more effective treatment options and prevention efforts.
Date Created
2022
Contributors
- Cole, Sandra (Author)
- Wirkus, Stephen (Thesis advisor)
- Gardner, Carl (Committee member)
- Lanchier, Nicolas (Committee member)
- Camacho, Erika (Committee member)
- Fricks, John (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
221 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171851
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Applied Mathematics
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 10 months ago
Additional Formats