Full metadata
Title
Hierarchical Sequential Event Prediction and Translation from Aviation Accident Report Data
Description
Sequential event prediction or sequential pattern mining is a well-studied topic in the literature. There are a lot of real-world scenarios where the data is released sequentially. People believe that there exist repetitive patterns of event sequences so that the future events can be predicted. For example, many companies build their recommender system to predict the next possible product for the users according to their purchase history. The healthcare system discovers the relationships among patients’ sequential symptoms to mitigate the adverse effect of a treatment (drugs or surgery). Modern engineering systems like aviation/distributed computing/energy systems diagnosed failure event logs and took prompt actions to avoid disaster when a similar failure pattern occurs. In this dissertation, I specifically focus on building a scalable algorithm for event prediction and extraction in the aviation domain. Understanding the accident event is always the major concern of the safety issue in the aviation system. A flight accident is often caused by a sequence of failure events. Accurate modeling of the failure event sequence and how it leads to the final accident is important for aviation safety. This work aims to study the relationship of the failure event sequence and evaluate the risk of the final accident according to these failure events. There are three major challenges I am trying to deal with. (1) Modeling Sequential Events with Hierarchical Structure: I aim to improve the prediction accuracy by taking advantage of the multi-level or hierarchical representation of these rare events. Specifically, I proposed to build a sequential Encoder-Decoder framework with a hierarchical embedding representation of the events. (2) Lack of high-quality and consistent event log data: In order to acquire more accurate event data from aviation accident reports, I convert the problem into a multi-label classification. An attention-based Bidirectional Encoder Representations from Transformers model is developed to achieve good performance and interpretability. (3) Ontology-based event extraction: In order to extract detailed events, I proposed to solve the problem as a hierarchical classification task. I improve the model performance by incorporating event ontology. By solving these three challenges, I provide a framework to extract events from narrative reports and estimate the risk level of aviation accidents through event sequence modeling.
Date Created
2022
Contributors
- Zhao, Xinyu (Author)
- Yan, Hao (Thesis advisor)
- Liu, Yongming (Committee member)
- Ju, Feng (Committee member)
- Iquebal, Ashif (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
125 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171838
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Industrial Engineering
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 11 months ago
Additional Formats