171821-Thumbnail Image.png
Description
Gallium Nitride (GaN) is uniquely suited for Radio Frequency (RF) and power electronic applications due to its intrinsically high saturation velocity and high mobility compared to Silicon and Silicon Carbide (SiC). High Electron Mobility Transistors (HEMTs) have remained the primary

Gallium Nitride (GaN) is uniquely suited for Radio Frequency (RF) and power electronic applications due to its intrinsically high saturation velocity and high mobility compared to Silicon and Silicon Carbide (SiC). High Electron Mobility Transistors (HEMTs) have remained the primary topology for GaN transistors in RF applications. However, GaN HEMTs suffer from a variety of issues such as current crowding, lack of enhancement mode (E-Mode) operation and non-linearity. These drawbacks slow the widespread adoption of GaN devices for ultra-low voltage (ULV) applications such as voltage regulators, automotive and computing applications. E-mode operation is especially desired in low-voltage high frequency switching applications. In this context, Fin Field Effect Transistors (FinFETs) offer an alternative topology for ULV applications as opposed to conventional HEMTs. Recent advances in material processing, high aspect ratio epitaxial growth and etching methods has led to an increased interest in 3D nanostructures such as Nano-FinFETs and Nanowire FETs. A typical 3D nano-FinFET is the AlGaN/GaN Metal Insulator Semiconductor (MIS) FET wherein a layer of Al2O3 surrounds the AlGaN/GaN fin. The presence of the side gates leads to additional lateral confinement of the 2D Electron Gas (2DEG). Theoretical calculations of transport properties in confined systems such as AlGaN/GaN Finfets are scarce compared to those of their planar HEMT counterparts. A novel simulator is presented in this dissertation, which employs self-consistent solution of the coupled 1D Boltzmann – 2D Schrödinger – 3D Poisson problem, to yield the channel electrostatics and the low electric field transport characteristics of AlGaN/GaN MIS FinFETs. The low field electron mobility is determined by solving the Boltzmann transport equation in the Quasi-1D region using 1D Ensemble Monte Carlo method. Three electron-phonon scattering mechanisms (acoustic, piezoelectric and polar optical phonon scattering) and interface roughness scattering at the AlGaN/GaN interface are considered in this theoretical model. Simulated low-field electron mobility and its temperature dependence are in agreement with experimental data reported in the literature. A quasi-1D version of alloy clustering model is derived and implemented and the limiting effect of alloy clustering on the low-field electron mobility is investigated for the first time for MIS FinFET device structures.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Modeling Electrostatics and Low-field Electron Mobility in GaN FinFETs
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Electrical Engineering

    Machine-readable links