Full metadata
Title
Combining learning with knowledge-rich planning allows for efficient multi-agent solutions to the problem of perpetual sparse rewards
Description
This work has improved the quality of the solution to the sparse rewards problemby combining reinforcement learning (RL) with knowledge-rich planning. Classical
methods for coping with sparse rewards during reinforcement learning modify the
reward landscape so as to better guide the learner. In contrast, this work combines
RL with a planner in order to utilize other information about the environment. As
the scope for representing environmental information is limited in RL, this work has
conflated a model-free learning algorithm – temporal difference (TD) learning – with
a Hierarchical Task Network (HTN) planner to accommodate rich environmental
information in the algorithm. In the perpetual sparse rewards problem, rewards
reemerge after being collected within a fixed interval of time, culminating in a lack of a
well-defined goal state as an exit condition to the problem. Incorporating planning in
the learning algorithm not only improves the quality of the solution, but the algorithm
also avoids the ambiguity of incorporating a goal of maximizing profit while using
only a planning algorithm to solve this problem. Upon occasionally using the HTN
planner, this algorithm provides the necessary tweak toward the optimal solution. In
this work, I have demonstrated an on-policy algorithm that has improved the quality
of the solution over vanilla reinforcement learning. The objective of this work has
been to observe the capacity of the synthesized algorithm in finding optimal policies to
maximize rewards, awareness of the environment, and the awareness of the presence
of other agents in the vicinity.
Date Created
2022
Contributors
- Nandan, Swastik (Author)
- Pavlic, Theodore (Thesis advisor)
- Das, Jnaneshwar (Thesis advisor)
- Berman, Spring (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
50 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171816
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2022
Field of study: Computer Science
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 11 months ago
Additional Formats