171806-Thumbnail Image.png
Description
In-field characterization of photovoltaics is crucial to understanding performance and degradation mechanisms, subsequently improving overall reliability and lifespans. Current outdoor characterization is often limited by logistical difficulties, variable weather, and requirements to measure during peak production hours. It becomes a

In-field characterization of photovoltaics is crucial to understanding performance and degradation mechanisms, subsequently improving overall reliability and lifespans. Current outdoor characterization is often limited by logistical difficulties, variable weather, and requirements to measure during peak production hours. It becomes a challenge to find a characterization technique that is affordable with a low impact on system performance while still providing useful device parameters. For added complexity, this characterization technique must have the ability to scale for implementation in large powerplant applications. This dissertation addresses some of the challenges of outdoor characterization by expanding the knowledge of a well-known indoor technique referred to as Suns-VOC. Suns-VOC provides a pseudo current-voltage curve that is free of any effects from series resistance. Device parameters can be extracted from this pseudo I-V curve, allowing for subsequent degradation analysis. This work introduces how to use Suns-VOC outdoors while normalizing results based on the different effects of environmental conditions. This technique is validated on single-cells, modules, and small arrays with accuracies capable of measuring yearly degradation. An adaptation to Suns-VOC, referred to as Suns-Voltage-Resistor (Suns-VR), is also introduced to complement the results from Suns-VOC. This work can potentially be used to provide a diagnostic tool for outdoor characterization in various applications, including residential, commercial, and industrial PV systems.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Reliability and Degradation Characterization for PV Modules and Systems
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Electrical Engineering

    Machine-readable links