Full metadata
Title
Utilizing Injection Molding to Generate Complex Three-Dimensional Cell Encapsulation Geometries
Description
Encapsulation is a promising technology to deliver cell-based therapies to patients safely and with reduced need for immunosuppression. Macroencapsulation devices are advantageous due to their ease of retrieval, and thus enhanced safety profile, relative to microencapsulation techniques. A major challenge in macroencapsulation device design is ensuring sufficient oxygen transport to encapsulated cells, requiring high surface area-to-volume device geometries. In this work, a hydrogel injection molding biofabrication method was modified to design and generate complex three-dimensional macroencapsulation devices that have greater complexity in the z-axis. The rheological properties of diverse hydrogels were evaluated and used to perform computational flow modeling within injection mold devices to evaluate pressure regimes suitable for cell viability. 3D printed device designs were evaluated for the reproducibility of hydrogel filling and extraction. This work demonstrated that injection molding biofabrication to construct complex three-dimensional geometries is feasible in pressure regimes consistent with preserving cell viability. Future work will evaluate encapsulated cell viability after injection molding.
Date Created
2022
Contributors
- Browning, Blake (Author)
- Weaver, Jessica D (Thesis advisor)
- Vernon, Brent (Committee member)
- Nikkhah, Mehdi (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
34 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171760
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2022
Field of study: Biomedical Engineering
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 11 months ago
Additional Formats