Description
Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The adaptive therapy model comes from the integrated pest management agricultural strategy, predator prey model, and the unique intra- and inter-tumor heterogeneity of tumors. The purpose of this thesis is to analyze and compare gemcitabine dose response on hormone refractory breast cancer cells retrieved from mice using an adaptive therapy strategy with standard therapy treatment. In this study, we compared intermittent (drug holiday) adaptive therapy with maximum tolerated dose therapy. The MCF7 resistant cell lines to both fulvestrant and palbociclib were injected into the mammary fat pads of 8 weeks old NOD/SCID gamma (NSG) mice which were then treated with gemcitabine. Tumor burden graphs were made to track tumor growth/decline during different treatments while Drug Dose Response (DDR) curves were made to test the sensitivity of the cell lines to the drug gemcitabine. The tumor burden graphs showed success in controlling the tumor burden with intermittent treatment. The DDR curves showed a positive result in using the adaptive therapy treatment method to treat mice with gemcitabine. Due to some fluctuating DDR results, the sensitivity of the cell lines to gemcitabine needs to be further studied by repeating the DDR experiment on the other mice cell lines for stronger results.
Details
Title
- Single Drug Adaptive Therapy on Hormone Refractory Breast Cancer
Contributors
- Conti, Aviona Christina (Author)
- Maley, Carlo (Thesis advisor)
- Blattman, Joseph (Committee member)
- Anderson, Karen (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2022
- Field of study: Biology