171719-Thumbnail Image.png
Description
The energy consumed by buildings occupies a large part of energy consumption and carbon emissions. Meanwhile, enormous amounts of waste heat from buildings and the swiftly increasing demand for electric energy have become one of the essential contradictions that scientists

The energy consumed by buildings occupies a large part of energy consumption and carbon emissions. Meanwhile, enormous amounts of waste heat from buildings and the swiftly increasing demand for electric energy have become one of the essential contradictions that scientists pay attention to. As a result, how to make use of the waste heat to generate electric energy becomes an appreciable research topic. In the latest research, it is common to convert the thermal energy generated by the temperature difference into electrical energy using the Seebeck effect. In previous research, a prototype of a thermogalvanic cell with graphite as the electrodes and a combination of Iron (II) and Iron (III) perchlorate salts (Fe(ClO4)2, Fe(ClO4)3) as the electrolyte, and with a 3D-printed Schwarz-P structure, was designed and assembled for achieving the energy conversion. The research shows that the incorporation of a 3D-printed Schwarz-P structure improves the thermogalvanic cell’s performance and increases the temperature difference across the cell. Here we focus on the same type of thermogalvanic cell prototype and keep the same working temperature difference but use different electrolyte concentrations (0.05, 0.10, 0.15, 0.20, and 0.25 mol/L) to measure the electric output, including open-circuit voltage, short-circuit current, and maximum output power, and the internal resistance. The results indicate that the open-circuit voltage and maximum output power increase with the rise of electrolyte concentrations, and the short-circuit current decreases with the rise of electrolyte concentrations.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Effect of Electrolyte Concentration on the Electric Output of Thermogalvanic Cells with Schwartz-P Plastic Structures
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2022
    • Field of study: Aerospace Engineering

    Machine-readable links