Full metadata
Title
Increasing Our Understanding of Insecticide Resistance Evolution by Expanding and Comparing Insecticide Susceptibility Bioassays
Description
Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype and phenotype, and a deeper knowledge of how bioassay data relates to vector control success or failure is imperative. A bioassay method that is infrequently used but yields robust results is the topical application bioassay, where the insect is directly treated with a constant volume and concentration of an insecticide via a syringe. To bring more attention to this method, my colleagues and I published a paper in the Journal of Visualized Experiments where the optimized protocol of the topical application bioassay for mosquitoes and fruit flies is described, and the strengths and limitations to the method are explained. To further investigate insecticide susceptibility tests, I set up my individual project where I used Aedes aegypti mosquitoes to compare the topical application bioassay to the commonly used Centers for Disease Control and Prevention (CDC) bottle bioassay and World Health Organization (WHO) tube test. The objective of this study was to test which method exhibited the most variability in mortality results, which would guide the choice of assay to determine the link between resistant and susceptible genotype and phenotype. The results showed that the topical application method did indeed exhibit the least amount of variation, followed by the CDC bottle bioassay (WHO data is currently being collected). This suggests that the topical application bioassay could be a useful tool in insecticide resistance surveillance studies, and, depending on the goal, may be better than the CDC and WHO tube tests for assessing resistance levels at a given site. This study challenges the value of the widely used CDC and WHO assays and provides a discussion on the importance of technical and practical resistance assays. This will help vector control specialists to collect accurate surveillance data that will inform effective RMS.
Date Created
2022
Contributors
- Althoff, Rachel (Author)
- Huijben, Silvie (Thesis advisor)
- Harris, Robin (Committee member)
- Collins, James (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
110 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171685
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2022
Field of study: Biology
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 11 months ago
Additional Formats