171589-Thumbnail Image.png
Description
Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as

Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as the bottom cell for a 3-terminal lattice-matched dilute-nitride Ga (In)NP(As)/Si monolithic tandem solar cell. An effective fabrication process has been developed and the process challenges related to open circuit voltage (Voc), series resistance (Rs), and fill factor (FF) are experimentally analyzed. While wet etching, the sample lost the initial passivation, and by changing the etchant solution and passivation process, the voltage at maximum power recovered to an initial value of over 710 mV before metallization. The factors reducing the series resistance loss in IBC cells were also studied. One of these factors was the Indium Tin Oxide (ITO) sputtering parameters, which impact the conductivity of the ITO layer and transport across the a-Si:H/ITO interface. For the standard recipe, the chamber pressure was 3.5 mTorr with no oxygen partial pressure, and the thickness of the ITO layer in contact with the a-Si:H layers, was optimized to 150 nm. The patterning method for the metal contacts and final annealing also change the contact resistance of the base and emitter stack layers. The final annealing step is necessary to recover the sputtering damage; however, the higher the annealing time the higher the final IBC series resistance. The best efficiency achieved was 19.3% (Jsc = 37 mA/cm2, Voc = 691 mV, FF = 71.7%) on 200 µm thick 1-15 Ω-cm n-type CZ C-Si with a designated area of 4 cm2.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Fabrication of Interdigitated Back Contact Cell Towards making Three Terminal Silicon Based Tandem Cell
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Physics

    Machine-readable links