Description
This thesis examines the composition, flow rate, and recyclability of two abundant materials generated in modern society: municipal sewage sludge (SS) generated during conventional wastewater treatment, and single-use plastic packaging (specifically, plastic bottles) manufactured and dispersed by fast-moving consumer goods companies (FMCG). The study found the presence of 5 precious metals in both American and Chinese sewage sludges. 13 rare elements were found in American sewage sludge while 14 were found in Chinese sewage sludge. Modeling results indicated 251 to 282 million metric tons (MMT) of SS from 2022 to 2050, estimated to contain some 6.8 ± 0.5 MMT of valuable elements in the USA, the reclamation of which is valued at $24B ± $1.6B USD. China is predicted to produce between 819 - 910 MMT of SS between 2022 and 2050 containing an estimated 14.9 ± 1.7 MMT of valuable elements worth a cumulative amount of $94B ± 20B (Chapter 2 and 3). The 4th chapter modeled how much plastic waste Coca-Cola, PespiCo and Nestlé produced and globally dispersed in 21 years: namely an estimated 126 MMT ± 8.7 MMT of plastic. Some 15.6 MMT ± 1.3 MMT (12%) is projected to have become aquatic pollution costing estimated at $286B USD. Some 58 ± 5 MMT or 46% of the total mass were estimated to result in terrestrial plastic pollution, with only minor amounts of 9.9 ± 0.7 MMT, deemed actually recycled. Absent of change, the three companies are predicted to generate an additional 330 ± 15 MMT of plastic by 2050, thereby creating estimated externalities of $8 ± 0.4 trillion USD. The analysis suggests that a small subset of FMCG companies are well positioned to change the current trajectory of global plastic pollution and ocean plastic littering. Chapter 5 examined the barriers to Circular Economy. In an increasingly uncertain post pandemic world, it is becoming progressively important to conserve local resources and extract value from materials that are currently interpreted a “waste” rather than a current or potential future resource.
Details
Title
- Solutions for Sewage Sludge Reclamation and Plastic Waste Reduction
Contributors
- Biyani, Nivedita (Author)
- Halden, Rolf U. (Thesis advisor)
- Allenby, Braden (Committee member)
- Jalbert, Kirk (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2022
- Field of study: Civil, Environmental and Sustainable Engineering