171411-Thumbnail Image.png
Description
In the era of big data, more and more decisions and recommendations are being made by machine learning (ML) systems and algorithms. Despite their many successes, there have been notable deficiencies in the robustness, rigor, and reliability of these ML

In the era of big data, more and more decisions and recommendations are being made by machine learning (ML) systems and algorithms. Despite their many successes, there have been notable deficiencies in the robustness, rigor, and reliability of these ML systems, which have had detrimental societal impacts. In the next generation of ML, these significant challenges must be addressed through careful algorithmic design, and it is crucial that practitioners and meta-algorithms have the necessary tools to construct ML models that align with human values and interests. In an effort to help address these problems, this dissertation studies a tunable loss function called α-loss for the ML setting of classification. The alpha-loss is a hyperparameterized loss function originating from information theory that continuously interpolates between the exponential (alpha = 1/2), log (alpha = 1), and 0-1 (alpha = infinity) losses, hence providing a holistic perspective of several classical loss functions in ML. Furthermore, the alpha-loss exhibits unique operating characteristics depending on the value (and different regimes) of alpha; notably, for alpha > 1, alpha-loss robustly trains models when noisy training data is present. Thus, the alpha-loss can provide robustness to ML systems for classification tasks, and this has bearing in many applications, e.g., social media, finance, academia, and medicine; indeed, results are presented where alpha-loss produces more robust logistic regression models for COVID-19 survey data with gains over state of the art algorithmic approaches.
Reuse Permissions


  • Download restricted.
    Download count: 1

    Details

    Title
    • A Tunable Loss Function for Robust, Rigorous, and Reliable Machine Learning
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Electrical Engineering

    Machine-readable links