171405-Thumbnail Image.png
Description
Many companies face pressure to deploy flexible compute infrastructures to manage their operations. However, the current developments in cloud and edge computing have created a data processing asymmetry challenge. On the edge, workloads frequently require low-latency responses, contend with connectivity

Many companies face pressure to deploy flexible compute infrastructures to manage their operations. However, the current developments in cloud and edge computing have created a data processing asymmetry challenge. On the edge, workloads frequently require low-latency responses, contend with connectivity and bandwidth instabilities, may require privacy guarantees, and may perform under limited or high-variance compute resources. In the cloud, workloads tolerate longer latency, expect highly available infrastructure, access high-performance compute resources, and have more power available, but may be further from where the processing results are needed. This compute asymmetry challenge requires a new computational paradigm. In this work, I advance a new computing architecture model, called the Continuum Computing Architecture (CCA), and validate this model with a candidate architecture. CCA is a unifying edge-fog-cloud computing model that provides the following capabilities: (i) a continuum of compute that spans from network-connected edge devices to the cloud – with very low power consumption to high-performance compute; (ii) same architecture with different micro-architectures along this compute continuum – a single RISC-V instruction set architecture with reconfigurable processing units; (iii) portability across all scales – the same program can be run across the continuum with different latencies and power utilizations; and (iv) secure shared memory features are fully-supported – physical memories along the continuum are abstracted to allow edge and cloud to share data in a transparent fashion. The validating architecture has three micro-architectures. The edge micro-architecture, Parmenides, targets accelerator-based edge processing system-on-chips (SoCs). Parmenides includes security features to protect the SoC in uncontrolled environments while adapting its power usage and processing to ambient events. The fog and cloud micro-architectures, Melissus and Zeno, must support application data distribution across the memory of many compute nodes to achieve the desired scale and performance. As a solution, I introduce the Eleatic Memory Model (EMM): a global shared memory architecture with hardware-supported global memory access permissions. All memory accesses are made with a Namespace-based capability scheme that supports improved scalability and memory security. The CCA model addresses several memory-centric security challenges including the misuse of resources, risk to application and data integrity, as well as concerns over authorization and confidentiality.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Eleatic: Secure Architecture Across the Edge-to-Cloud Continuum
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Computer Engineering

    Machine-readable links