171361-Thumbnail Image.png
Description
Software Defined Networking has been the primary component for Quality of Service provisioning in the last decade. The key idea in such networks is producing independence between the control and the data-plane. The control plane essentially provides decision making logic

Software Defined Networking has been the primary component for Quality of Service provisioning in the last decade. The key idea in such networks is producing independence between the control and the data-plane. The control plane essentially provides decision making logic to the data-plane, which in-turn is only responsible for moving the packets from source to destination based on the flow-table entries and actions. In this thesis an in-depth design and analysis of Software Defined Networking control plane architecture for Next Generation Networks is provided. Typically, Next Generation Networks are those that need to satisfy Quality of Service restrictions (like time bounds, priority, hops, to name a few) before the packets are in transit. For instance, applications that are dependent on prediction popularly known as ML/AI applications have heavy resource requirements and require completion of tasks within the time bounds otherwise the scheduling is rendered useless. The bottleneck could be essentially on any layer of the network stack, however in this thesis the focus is on layer-2 and layer-3 scheduling. To that end, the design of an intelligent control plane is proposed by paying attention to the scheduling, routing and admission strategies which are necessary to facilitate the aforementioned applications requirement. Simulation evaluation and comparisons with state of the art approaches is provided withreasons corroborating the design choices. Finally, quantitative metrics are defined and measured to justify the benefits of the designs.
Reuse Permissions


  • Download restricted.
    Download count: 5

    Details

    Title
    • Building Intelligent Network Control Plane
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Computer Engineering

    Machine-readable links