Full metadata
Title
Detection and Manipulation of Extrachromosomal Circular DNA in Yeast
Description
Extrachromosomal circular DNA (eccDNA) has become an increasingly popular subject of study in eukaryotic cell biology due to its prevalence in human cancer. Though the literature reports a consensus regarding DNA break repair as a driver of eccDNA formation, there remains a lack of knowledge surrounding the exact mechanisms for eccDNA formation and the selective dynamics that promote their retainment in a cell or population. A central issue to studying eccDNA is the inability to distinguish between linear and circular DNA of homologous sequence. The work presented here describes an adapted eccDNA enrichment and detection assay, specifically for investigating the effects of manipulating a known eccDNA-forming locus in the budding yeast Saccharomyces cerevisiae. First, a galactose inducible GFP reporter was integrated within the copper inducible CUP1 tandem repeat locus of yeast cells. The eccDNA enrichment and detection assay was first applied to wildtype yeast to demonstrate the presence of CUP1 eccDNA in copper induced cells by qPCR. Although subsequent sequencing analysis failed to validate this result, it indicated the presence of various other known and previously un-reported eccDNA species. Finally, application of the enrichment protocol and qPCR detection assay to CUP1-GFP reporter cells yielded inconclusive results, suggesting the assay requires further optimization to sensitively detect eccDNA from this altered locus. While more work is necessary to draw conclusions regarding the limits of eccDNA production at a manipulated eccDNA-forming locus, this knowledge will lend to the potential for therapeutically targeting eccDNA at the point of de novo formation.
Date Created
2022
Contributors
- Keal, Tula (Author)
- Wang, Xiao (Thesis advisor)
- Tian, Xiaojun (Committee member)
- Plaisier, Christopher (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
47 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.168771
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2022
Field of study: Molecular and Cellular Biology
System Created
- 2022-08-22 07:04:14
System Modified
- 2022-08-22 07:04:37
- 2 years 3 months ago
Additional Formats