Full metadata
Title
Urea Recovery from Human Urine Using Nanofiltration and Reverse Osmosis
Description
Global shortages of urea and unsustainable production of synthetic urea have caused concerns over the future of food production, automobile operation, and other processes. Urine is a waste product that could supplement synthetic urea production. This study utilizes polyamide reverse osmosis (RO) and nanofiltration (NF) membranes in a cross-flow orientation to selectively recover urea from fresh human urine. Urea permeation experiments were conducted to determine the effects of urea stabilization via pH adjustment and membrane type on the production of a pure urea product. Fouling mitigation experiments were then conducted to determine the efficacy of microfiltration (MF) pretreatment on the reduction of the membrane fouling layer. The results showed that the NF90 membrane had advantageous performance to the BW30 RO and NF270 membranes, permeating 76% of the urea while rejecting 68% of the conductivity. Urine stabilization via acetic acid or sodium hydroxide addition did not inhibit membrane performance, signifying the use of pH 5 as a suitable pretreatment condition. Real fresh urine had higher rejection of constituents for NF90, suggesting the reduction of flux across the membrane due to interactions with organic material. MF pretreatment reduced foulant thickness and permeate flux loss but did not change the speciation of microorganisms. Finally, different urea-based products, such as fertilizers, biocement, and synthetic polymers, were suggested to show the potential of urine-recovered urea to reduce costs. The results from this work show the efficacy of using polyamide RO and NF membranes to supplement unsustainable synthetic production of urea with sustainably sourced urea from a waste product, human urine.
Date Created
2022
Contributors
- Crane, Lucas Christopher (Author)
- Boyer, Treavor H (Thesis advisor)
- Perreault, Francois (Committee member)
- Westerhoff, Paul (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
68 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.168770
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2022
Field of study: Civil, Environmental and Sustainable Engineering
System Created
- 2022-08-22 07:03:37
System Modified
- 2022-08-22 07:03:59
- 2 years 3 months ago
Additional Formats