Description
The rapid growth of data generated from Internet of Things (IoTs) such as smart phones and smart home devices presents new challenges to cloud computing in transferring, storing, and processing the data. With increasingly more powerful edge devices, edge computing, on the other hand, has the potential to better responsiveness, privacy, and cost efficiency. However, resources across the cloud and edge are highly distributed and highly diverse. To address these challenges, this paper proposes EdgeFaaS, a Function-as-a-Service (FaaS) based computing framework that supports the flexible, convenient, and optimized use of distributed and heterogeneous resources across IoT, edge, and cloud systems. EdgeFaaS allows cluster resources and individual devices to be managed under the same framework and provide computational and storage resources for functions. It provides virtual function and virtual storage interfaces for consistent function management and storage management across heterogeneous compute and storage resources. It automatically optimizes the scheduling of functions and placement of data according to their performance and privacy requirements. EdgeFaaS is evaluated based on two edge workflows: video analytics workflow and federated learning workflow, both of which are representative edge applications and involve large amounts of input data generated from edge devices.
Details
Title
- EdgeFaaS: A Function-based Framework for Edge Computing
Contributors
- Jin, Runyu (Author)
- Zhao, Ming (Thesis advisor)
- Shrivastava, Aviral (Committee member)
- Sarwat Abdelghany Aly Elsayed, Mohamed (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2021
- Field of study: Computer Science