Full metadata
Title
Structural and Biochemical Characterization of Proteins Relevant to Human Disease
Description
This work comprises a cumulative effort to provide analysis of proteins relevant to understanding and treating human disease. This dissertation focuses on two main protein complexes: the structure of the Chimp adenovirus Y25 capsid assembly, as used in the SARS-CoV-2 vaccine, Vaxzveria, and the Dbl family RhoGEF (guanosine exchange factor) Syx and its associated small G protein, RhoA. The course of research was influenced heavily by the onset of the Covid-19 pandemic and associated lockdown, which pushed anyone with the means to do meaningful research to shift priorities towards addressing the greatest public health crisis since the 1918 flu pandemic.
Analysis of the Syx-RhoA complex for the purposes of structurally guided drug design was initially the focus of heavy optimization efforts to overcome the numerous challenges associated with expression, purification, and handling of this protein. By analyzing E. Coli derived protein new important knowledge was gained about this protein’s biophysical characteristics which contribute to its behavior and may inform drug design efforts. Expression in SF9 insect cells resulted in promising conditions for production of homogeneous and monodispersed protein. Homology modeling and molecular dynamics simulation of this protein support hypotheses about its interactions with both RhoA as well as regions of the cytoplasmic leaflet of the cell membrane.
Structural characterization of ChAdOx1, the adenoviral vector used in the AstraZeneca Covid-19 vaccine, Vaxzveria resulted in the highest resolution adenovirus structure ever solved (3.07Å). Subsequent biochemical analysis and computational simulations of PF4 with the ChAdOx1 capsid reveal interactions with important implications for vaccine induced thrombocytic throbocytopenia syndrome, a disorder observed in approximately 0.000024% of patients who receive Vaxzveria.
Date Created
2021
Contributors
- Boyd, Ryan J (Author)
- Fromme, Petra (Thesis advisor)
- Chiu, Po-Lin (Committee member)
- Liu, Wei (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
160 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.168493
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Biochemistry
System Created
- 2022-08-22 04:02:27
System Modified
- 2022-08-22 04:02:54
- 2 years 3 months ago
Additional Formats