Full metadata
Title
Micro-Scale In Vivo Human Electrophysiological Functional Connectivity During Simple Language Production and Parkinson’s Disease
Description
Information processing in the brain is mediated by network interactions between anatomically distant (centimeters apart) regions of cortex and network action is fundamental to human behavior. Disruptive activity of these networks may allow a variety of diseases to develop. Degradation or loss of network function in the brain can affect many aspects of the human experience; motor disorder, language difficulties, memory loss, mood swings, and more. The cortico-basal ganglia loop is a system of networks in the brain between the cortex, basal ganglia, the thalamus, and back to the cortex. It is not one singular circuit, but rather a series of parallel circuits that are relevant towards motor output, motor planning, and motivation and reward. Studying the relationship between basal ganglia neurons and cortical local field potentials may lead to insights about neurodegenerative diseases and how these diseases change the cortico-basal ganglia circuit. Speech and language are uniquely human and require the coactivation of several brain regions. The various aspects of language are spread over the temporal lobe and parts of the occipital, parietal, and frontal lobe. However, the core network for speech production involves collaboration between phonologic retrieval (encoding ideas into syllabic representations) from Wernicke’s area, and phonemic encoding (translating syllables into motor articulations) from Broca’s area. Studying the coactivation of these brain regions during a repetitive speech production task may lead to a greater understanding of their electrophysiological functional connectivity. The primary purpose of the work presented in this document is to validate the use of subdural microelectrodes in electrophysiological functional connectivity research as these devices best match the spatial and temporal scales of brain activity. Neuron populations in the cortex are organized into functional units called cortical columns. These cortical columns operate on the sub-millisecond temporal and millimeter spatial scale. The study of brain networks, both in healthy and unwell individuals, may reveal new methodologies of treatment or management for disease and injury, as well as contribute to our scientific understanding of how the brain works.
Date Created
2021
Contributors
- O'Neill, Kevin John (Author)
- Greger, Bradley (Thesis advisor)
- Santello, Marco (Committee member)
- Helms Tillery, Stephen (Committee member)
- Papandreou-Suppapola, Antonia (Committee member)
- Kleim, Jeffery (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
85 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.168487
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Biomedical Engineering
System Created
- 2022-08-22 03:58:32
System Modified
- 2022-08-22 03:58:53
- 2 years 3 months ago
Additional Formats