Description
In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs) in surface waters and drinking water systems. This study focuses on the treatment of emerging chemical contaminants including nitrosodimethylamine (NDMA) and 1,4-dioxane. In addition, the inactivation of microbial contaminants of concern in water including E. coli, Legionella, Mycobacterium and fungal spores were studied using the same treatment technologies. The ECs chosen are not susceptible to conventional treatment process and there still remains a need for alternate processes for their removing/remediating to ensure safe drinking water. The treatment technologies utilized were Advanced Oxidation Processes (AOP) involving UV 220 /254 nm employing an excimer lamp and a low-pressure mercury lamp with ReFLeXTM technology and peracetic acid (PAA). The main objective of this study was to develop a new alternate technology for the enhanced remediation of chemical and microorganisms of concerns in water. The specific research objectives included: 1) To study the efficacy of the UV system to treat the selected contaminants. 2) To study the effect of PAA on the remediation of the contaminants. 3) To explore a new AOP technology under dynamic flow conditions with varying UV and PAA doses. 4) To determine optimized UV and PAA dosages to obtain enhanced remediation of the selected contaminant under dynamic flow conditions to better mimic the real-world applications.
Details
Title
- Treatment of Emerging Chemical and Microbial Contaminants in Water Using Advanced Reflective UV Technology
Contributors
- Natekar, Sunny Anand (Author)
- Abbaszadegan, Morteza (Thesis advisor)
- Fox, Peter (Committee member)
- Alum, Absar (Committee member)
- Diefenthal, George (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2021
- Field of study: Civil, Environmental and Sustainable Engineering