Description
The waterways in the United States are polluted by agricultural, mining, and industrial activities. Recovery of valuable materials, such as energy and nutrients, from these waste streams can improve the economic and environmental sustainability of wastewater treatment. A number of state-of-the-art anaerobic bioreactors have promise for intensified anaerobic biological treatment and energy recovery, but they have drawbacks. The drawbacks should be overcome with a novel anaerobic biological wastewater treatment process: the anaerobic biofilm membrane bioreactor (AnBfMBR). This research works aims to advance key components of the AnBfMBR. The AnBfMBR is a hybrid suspended growth and biofilm reactor. The two main components of an AnBfMBR are plastic biofilm carriers and membranes. The plastic biofilm carriers provide the surface onto which the biofilms grow. Membranes provide liquid-solid separation, retention of suspended biomass, and a solids-free effluent. Introducing sufficient surface area promotes the biofilm accumulation of slow-growing methanogens that convert volatile fatty acids into methane gas. Biofilms growing on these surfaces will have a mixed culture that primarily consists of methanogens and inert particulate solids, but also includes some acetogens. Biomass that detaches from biofilms become a component of the suspended growth. A bench-scale AnBfMBR was designed by the AnBfMBR project team and constructed by SafBon Water Technology (SWT). The primary objective of this thesis project was to evaluate the ability of plastic biofilm carriers to minimize ceramic-membrane fouling in the AnBfMBR setting. A systematic analysis of mixing for the bench-scale AnBfMBR was also conducted with the plastic biofilm carriers. Experiments were conducted following a ‘run to failure’ method, in which the ceramic membranes provide filtration, and the time it takes to reach a ‘failure transmembrane pressure (TMP)’ was recorded. The experiments revealed two distinct trends. First, the time to failure TMP decreased as mixed liquor suspended solids concentration (MLSS) concentration increased. Second, increasing the carrier fill extend the time to failure, particularly for higher MLSS concentrations. Taken together, the experiments identified an optimized “sweet spot” for the AnBfMBR: an operating flux of 0.25-m/d, a failure TMP of 0.3-atm pressure, MLSS of 5,000 – 7,500 mg/L, and 40% carrier fill.
Details
Title
- Advancing the Anaerobic Biofilm Membrane Bioreactor
Contributors
- Roman, Brian Aaron (Author)
- Rittmann, Bruce (Thesis advisor)
- Boltz, Joshua (Committee member)
- Perreault, Francois (Committee member)
- Fox, Peter (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
-
Partial requirement for: M.S., Arizona State University, 2021
-
Field of study: Civil, Environmental and Sustainable Engineering