168398-Thumbnail Image.png
Description
With the extensive technological progress made in the areas of drives, sensors and processing, exoskeletons and other wearable devices have become more feasible. However, the stringent requirements in regards to size and weight continue to exert a strong influence on

With the extensive technological progress made in the areas of drives, sensors and processing, exoskeletons and other wearable devices have become more feasible. However, the stringent requirements in regards to size and weight continue to exert a strong influence on the system-wide design of these devices and present many obstacles to a successful solution. On the other hand, while the area of controls has seen a significant amount of progress, there also remains a large potential for improvements. This dissertation approaches the design and control of wearable devices from a systems perspective and provides a framework to successfully overcome the often-encountered obstacles with optimal solutions. The electronics, drive and control system design for the HeSA hip exoskeleton project and APEx hip exoskeleton project are presented as examples of how this framework is used to design wearable devices. In the area of control algorithms, a real-time implementation of the Fast Fourier Transform (FFT) is presented as an alternative approach to extracting amplitude and frequency information of a time varying signal. In comparison to the peak search method (PSM), the FFT allows extracting basic gait signal information at a faster rate because time windows can be chosen to be less than the fundamental gait frequency. The FFT is implemented on a 16-bit processor and the results show the real-time detection of amplitude and frequency coefficients at an update rate of 50Hz. Finally, a novel neural networks based approach to detecting human gait activities is presented. Existing neural networks often require vast amounts of data along with significant computer resources. Using Neural Ordinary Differential Equations (Neural ODEs) it is possible to distinguish between seven different daily activities using a significantly smaller data set, lower system resources and a time window of only 0.1 seconds.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Advanced Control Systems for Exo-Skeletons
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Systems Engineering

    Machine-readable links