168314-Thumbnail Image.png
Description
Cryogenic Electron Microscopy (Cryo-EM) is a method that can be used for studying the structure of biological systems. Biological samples are frozen to cryogenic temperatures and embedded in a vitreous ice when they are imaged by electrons. Due to its

Cryogenic Electron Microscopy (Cryo-EM) is a method that can be used for studying the structure of biological systems. Biological samples are frozen to cryogenic temperatures and embedded in a vitreous ice when they are imaged by electrons. Due to its ability to preserve biological specimens in near-native conditions, cryo-EM has a significant contribution to the field of structural biology.Single-particle cryo-EM technique was utilized to investigate the dynamical characteristics of various protein complexes such as the Nogo receptor complex, polymerase ζ (Polζ) in yeast and human integrin ⍺vβ8-pro-TGFβ1-GARP complex. Furthermore, I proposed a new method that can potentially improve the sample preparation for cryo-EM. The Nogo receptor complex was expressed using baculovirus expression system in sf9 insect cells and isolated for structural studies. Nogo receptor complex was found to have various stoichiometries and interactions between individual proteins. A structural investigation of the yeast apo polymerase ζ holoenzyme was also carried out. The apo Polζ displays a concerted motions associated with expansion of the Polζ DNA-binding channel upon DNA binding. Furthermore, a lysine residue that obstructs the DNA-binding channel in apo Polζ was found and suggested a gating mechanism. In addition, cryo-EM studies of the human integrin ⍺vβ8-pro-TGFβ1-GARP complex was conducted to assess its dynamic interactions. The 2D classifications showed the ⍺vβ8-pro-TGFβ1-GARP complex is highly flexible and required several sample preparation techniques such as crosslinking and graphene oxide coating to improve protein homogeneity on the EM grid. To overcome challenges within the cryo-EM technique such as particle adsorption on air-water interface, I have documented a collaborative work on the development and application of lipid monolayer sandwich on cryo-EM grid. Cryogenic electron tomography (cryo-ET) along with cryo-EM were used to study the characteristics of lipid monolayer sandwich as a potential protective layer for EM grid. The cryo-ET results demonstrated that the thickness of lipid monolayer is adequate for single-particle cryo-EM processing. Furthermore, there was no appearance of preferred orientations in cryo-EM and cryo-ET images. To establish that this method is actually beneficial, more data must be collected, and high-resolution structures of protein samples must be obtained using this methodology.
Reuse Permissions


  • Download restricted.
    Download count: 2

    Details

    Title
    • Structural Studies of Protein Complexes Using Single-particle Cryo-electron Microscopy
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Biochemistry

    Machine-readable links