Full metadata
Title
A Study on the Evaporation and Dynamic Wicking in a Passive Air Freshener
Description
In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance into the ambient air. To investigate the wicking process, a two-dimensional multiphase flow numerical model using COMSOL Multiphysics is built. Saturation and liquid pressure inside the pad are solved. Comparison between the simulation results and experiments shows that evaporation occurs simultaneously with the wicking process. The evaporation performance on the surface of the wicking pad is analyzed based on the kinetic theory, from which the mass flow rate of molecules passing the interface of each pore of the porous medium is obtained. A 3D model coupling the evaporation model and dynamic wicking on the evaporation pad is built to simulate the entire performance of the air freshener to the environment for a long period of time. Diffusion and natural convection effects are included in the simulation. The simulation results match well with the experiments for both the air fresheners placed in a chamber and in the absent of a chamber, the latter of which is subject to indoor airflow.
The gel-based air freshener can be constructed as a porous medium in which the solid network of particles spans the volume of the fragrance liquid. To predict the evaporation performance of the gel, two approaches are tested for gel samples in hemispheric shape. The first approach is the sessile drop model commonly used for the drying process of a pure liquid droplet. It can be used to estimate the weight loss rate and time duration of the evaporation. Another approach is to simulate the concentration profile outside the gel and estimate the evaporation rate from the surface of the gel using the kinetic theory. The evaporation area is updated based on the change of pore size. A 3D simulation using the same analysis is further applied to the cylindrical gel sample. The simulation results match the experimental data well.
Date Created
2021
Contributors
- Yuan, Jing (Author)
- Chen, Kangping (Thesis advisor)
- Herrmann, Marcus (Committee member)
- Huang, Huei-Ping (Committee member)
- Wang, Liping (Committee member)
- Jiao, Yang (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
116 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.168292
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Mechanical Engineering
System Created
- 2022-08-22 01:50:30
System Modified
- 2022-08-22 01:50:55
- 2 years 3 months ago
Additional Formats