Full metadata
Title
Understanding and Controlling Inelastic Energy Dissipation in Silicate Glasses
Description
Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a given purpose such as cost, ingredients, scalability of manufacturing, etc. Typically, silicate based glasses are often selected because they satisfy most of the selection criteria. However, with the recent abundant use of these glasses in touch-based applications, understanding their abilities to dissipate energy due to surface contact loads has become increasingly desirable. The most common silicate glasses worldwide are glassy silica and soda lime. Calcium aluminosilicates are also gaining popularity due to their importance as substrates for display screens in electronic devices. The surface energy dissipation and strength of these glasses are based on several factors, but predominantly rely on ingredient composition and the so-called Indentation Size Effect (ISE), where the strength depends on the maximum surface force. Both the composition and ISE alter the strength and favored energy dissipation mechanisms of the glass. Unlocking the contribution of these mechanisms and elucidating their dependence on composition and force is the underlining goal of this thesis.Prior to cracking, silicate glasses can inelastically deform by shear and densification. However, the link between the mechanical properties, strength, glass structure and maximum force and the propensity by which either of these mechanisms are favored still remains unclear. In this study, the first aim is to elucidate the causes of the ISE and
i
explore the relationships between the ISE and the dissipation mechanisms, and identify what feature(s) of the glass can be used to infer their behavior. All glasses have shown a strong link between the ISE and shear flow and densification. Second, the link between composition and the dissipation mechanisms will be elucidated. This is accomplished by performing indentation tests coupled with an annealing method to independently quantify the amount of volume associated with each dissipation mechanism and elucidate relationships with ingredients and structure of the glasses. Some conclusions will then be presented that link all these behaviors together.
Date Created
2021
Contributors
- Kazembeyki, Maryam (Author)
- Hoover, Christian G (Thesis advisor)
- Rajan, Subramaniam (Committee member)
- Neithalath, Narayanan (Committee member)
- Chawla, Nikhilesh (Committee member)
- Perreault, Francois (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
153 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.168290
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Civil, Environmental and Sustainable Engineering
System Created
- 2022-08-22 01:49:03
System Modified
- 2022-08-22 01:49:27
- 2 years 3 months ago
Additional Formats