166358-Thumbnail Image.png
Description

Hybrid metalloproteins incorporating synthetic organometallic active sites within a protein scaffold are being researched as viable catalysts for the production of hydrogen fuel. Our group and others have shown that the incorporation of cobalt protoporphyrin IX in cytochrome b₅₆₂ yields

Hybrid metalloproteins incorporating synthetic organometallic active sites within a protein scaffold are being researched as viable catalysts for the production of hydrogen fuel. Our group and others have shown that the incorporation of cobalt protoporphyrin IX in cytochrome b₅₆₂ yields artificial enzymes that reduce protons to molecular hydrogen in the presence of photoinductive light and photosensitizers. Using random mutagenesis via error-prone PCR we have created a library of mutants to use in directed evolution to optimize hydrogen catalysis, though a challenge in this project is that testing individual variants by gas chromatography is not feasible on a large scale. For this reason, we are developing a gasochromic, hydrogen assay that is based on the interaction of molecular hydrogen with tungsten trioxide with a palladium catalyst. Initially, results show this assay to be qualitatively accurate between trials; however, its application in screening remains a challenge.

Reuse Permissions


  • Download restricted.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • Tungsten Palladium Plates for Assaying H2 Catalysis by Cyt b562-CoPPIX
    Contributors
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links