165289-Thumbnail Image.png
Description

Ultra-short-pulse (USP) lasers in the visible range have been shown to have widespread sterilizing effects on pathogens, which is believed to be caused by mechanical perturbations induced in the pathogen that disrupt essential processes leading to inactivation. This paper demonstrates

Ultra-short-pulse (USP) lasers in the visible range have been shown to have widespread sterilizing effects on pathogens, which is believed to be caused by mechanical perturbations induced in the pathogen that disrupt essential processes leading to inactivation. This paper demonstrates a complete inactivation of Zika virus, a single-stranded enveloped RNA virus, using USP-laser technology and adds to the growing body of literature on the effectiveness of USP-laser inactivation. The paper also surveys previous inactivation studies to draw inferences about the nature of the Zika virus inactivation. We suggest that the method of inactivation in Zika virus is the selective amalgamation of viral capsid proteins into a nonfunctional mass of proteins because of the laser-induced vibrations, which mechanically prevents the release of viral RNA. The survey of similar inactivation experiments also supports the notion that the viral antigens might be unaffected by USP-laser inactivation, justifying the exploration of vaccine development using USP-laser inactivated Zika virus.

Reuse Permissions


  • Download restricted.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • USP-Laser Inactivation of Zika Virus for Eventual Vaccine Development
    Contributors
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links