164685-Thumbnail Image.png
Description

As the search for life in our universe grows, it is important to not only locate planets outside of our solar system, but also to work towards the ability to understand and characterize their nature. Many current research endeavors focus

As the search for life in our universe grows, it is important to not only locate planets outside of our solar system, but also to work towards the ability to understand and characterize their nature. Many current research endeavors focus on the discovery of exoplanets throughout the surrounding universe; however, we still know very little about the characteristics of these exoplanets themselves, particularly their atmospheres. Observatories, such as the Hubble Space Telescope and the Spitzer Space Telescope, have made some of the first observations which revealed information about the atmospheres of exoplanets but have yet to acquire complete and detailed characterizations of exoplanet atmospheres. The EXoplanet Climate Infrared TElescope (EXCITE) is a mission specifically designed to target key information about the atmospheres of exoplanets - including the global and spatially resolved energy budget, chemical bulk-compositions, vertical temperature profiles and circulation patterns across the surface, energy distribution efficiency as a function of equilibrium temperatures, and cloud formation and distribution - in order to generate dynamic and detailed atmospheric characterizations. EXCITE will use phase-resolved transit spectroscopy in the 1-4 micron wavelength range to accomplish these science goals, so it is important that the EXCITE spectrograph system is designed and tested to meet these observational requirements. For my thesis, I present my research on the EXCITE mission science goals and the design of the EXCITE spectrograph system to meet these goals, along with the work I have done in the beginning stages of testing the EXCITE spectrograph system in the lab. The primary result of my research work is the preparation of a simple optics setup in the lab to prepare a laser light source for use in the EXCITE spectrograph system - comparable to the preparation of incoming light by the EXCITE telescope system - which successfully yields an F# = 12.9 and a spot size of s = 39 ± 7 microns. These results meet the expectations of the system and convey appropriate preparation of a light source to begin the assembly and testing of the EXCITE spectrograph optics in the lab.

Reuse Permissions


  • Download restricted.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • The EXoplanet Climate Infrared TElescope (EXCITE) Spectrograph Design
    Contributors
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links