164535-Thumbnail Image.png
Description

Speedsolving, the art of solving twisty puzzles like the Rubik's Cube as fast as possible, has recently benefitted from the arrival of smartcubes which have special hardware for tracking the cube's face turns and transmitting them via Bluetooth. However, due

Speedsolving, the art of solving twisty puzzles like the Rubik's Cube as fast as possible, has recently benefitted from the arrival of smartcubes which have special hardware for tracking the cube's face turns and transmitting them via Bluetooth. However, due to their embedded electronics, existing smartcubes cannot be used in competition, reducing their utility in personal speedcubing practice. This thesis proposes a sound-based design for tracking the face turns of a standard, non-smart speedcube consisting of an audio processing receiver in software and a small physical speaker configured as a transmitter. Special attention has been given to ensuring that installing the transmitter requires only a reversible centercap replacement on the original cube. This allows the cube to benefit from smartcube features during practice, while still maintaining compliance with competition regulations. Within a controlled test environment, the software receiver perfectly detected a variety of transmitted move sequences. Furthermore, all components required for the physical transmitter were demonstrated to fit within the centercap of a Gans 356 speedcube.

Reuse Permissions


  • Download restricted.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • D.I.Y. Smartcube: Tracking the Face Turns of a Rubik's Cube Using Embedded Speakers
    Contributors
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links