161963-Thumbnail Image.png
Description
Advancements in technologies like the Internet of thing causes an increase in the presence of wireless transceivers. A cooperative communication between these transceivers opens a doorway for multiple novel applications. A mobile distributed transceiver architecture is a much more dynamic

Advancements in technologies like the Internet of thing causes an increase in the presence of wireless transceivers. A cooperative communication between these transceivers opens a doorway for multiple novel applications. A mobile distributed transceiver architecture is a much more dynamic environment dictating the necessity of faster synchronization among the transceivers. A possibility of simultaneous synchronization in parallel with the communication will theoretically ensure a high-speed synchronization without affecting the data rate. One such system has been implemented using a Costas loop and an extension of such synchronization technique to the full-duplex model has also been addressed. The rise in spectral demand is hard to meet with the regular Time duplex and frequency duplex communication systems. A full-duplex system is theoretically expected to double the spectral efficiency. However it comes with tremendous challenges, This thesis works on one of those challenges in implementing full-duplex synchronization. A coherent full-duplex model is designed to overcome the issue of transmitter leakage modeled as injection pulling, A known solution for this effect has been used to resolve the issue and complete the coherent full-duplex model. This establishes the simultaneous synchronization and communication system.
Reuse Permissions


  • Download restricted.
    Download count: 1

    Details

    Title
    • Transceiver Architectures with Wireless Synchronization
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2021
    • Field of study: Engineering

    Machine-readable links