Description
Modern radio frequency (RF) sensors are digital systems characterized by wide band frequency range, and capable to perform multi-function tasks such as: radar, electronic warfare (EW), and communications simultaneously on different sub-arrays. This demands careful understanding of the behavior of each sub-system and how each sub-array interacts with the others. A way to estimate and measure the active reflection coefficient (ARC) to calculate the active voltage standing wave ratio (VSWR) of multiple input multiple output (MIMO) radar when elements (or sub-arrays) are driven with different waveforms has been developed. This technique will help to understand and incorporate bounds in the design of MIMO systems and its waveforms to avoid damages by large power reflections and to improve system performance. The methodology developed consists of evaluating the active VSWR at each individual antenna element or sub-array from (1) estimates of the ARC by using computational electromagnetic (CEM) tools or (2) by directly measuring the ARC at each antenna element or sub-array. The former methodology is important especially at the design phase where trade offs between element shapes and geometrical configurations are taking place. The former methodology is expanded by directly measuring ARC using an experimental radar testbed Baseband-digital at Every Element MIMO Experimental Radar (BEEMER) system to assess the active VSWR, side-lobe levels and antenna pattern effects when different waveforms are transmitted. An optimization technique is implemented to mitigate the effects of the ARC in co-located MIMO radars by waveform design.
Details
Title
- Active Reflection Coefficient Analysis and Prediction, Measurement and Mitigation Methodologies for Co-Located MIMO Radars in Transmit Mode
Contributors
- ColonDiaz, Nivia (Author)
- Aberle, James T. (Thesis advisor)
- Bliss, Daniel W. (Thesis advisor)
- Diaz, Rodolfo (Committee member)
- Janning, Dan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2021
- Field of study: Electrical Engineering