Description
The concept of multi-scale, heterogeneous modeling is well-known to be central in the complexities of natural and built systems. Therefore, whole models that have parts with different spatiotemporal scales are preferred to those specified using a monolithic modeling approach and tightly integrated. To build simulation frameworks that are expressive and flexible, model composability is crucial where a whole model's structure and behavior traits must be concisely specified according to those of its parts and their interactions. To undertake the spatiotemporal model composability, a breast cancer cells chemotaxis exemplar is used. In breast cancer biology, the receptors CXCR4+ and CXCR7+ and the secreting CXCL12+ cells are implicated in spreading normal and malignant cells. As discrete entities, these can be modeled using Agent-Based Modeling (ABM). The receptors and ligand bindings with chemokine diffusion regulate the cells' movement gradient. These continuous processes can be modeled as Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE). A customized, text-based BrSimulator exists to model and simulate this kind of breast cancer phenomenon. To build a multi-scale, spatiotemporal simulation framework supporting model composability, this research proposes using composable cellular automata (CCA) modeling. Toward this goal, the Cellular Automata DEVS (CA-DEVS) model is used, and the novel Composable Cellular Automata DEVS (CCA-DEVS) modeling is proposed. The DEVS-Suite simulator is extended to support CA and CCA Parallel DEVS models. This simulator introduces new capabilities for controlled and modular run-time animation and superdense time trajectory visualization. Furthermore, this research proposes using the Knowledge Interchange Broker (KIB) approach to model and simulate the interactions between separate geo-referenced CCA models developed using the DEVS and Modelica modeling languages. To demonstrate the proposed model composability approach and its use in the extended DEVS-Suite simulator, the breast cancer cells chemotaxis and others have been studied. The BrSimulator is used as a proxy for evaluating the proposed model composability approach using an integrated DEVS-Suite and OpenModelica simulator. Simulation experiments are developed that show the composition of spatiotemporal ABM, ODE, and PDE models reproduce the behaviors of the same model developed in the BrSimulator.
Download count: 1
Details
Title
- A Multi-Scale, Component-Based, Composable Cellular Automata Modeling and Simulation Framework
Contributors
- Zhang, Chao (Author)
- Sarjoughian, Hessam S (Thesis advisor)
- Crook, Sharon (Committee member)
- Collofello, James (Committee member)
- Pavlic, Theodore (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
-
Partial requirement for: Ph.D., Arizona State University, 2021
-
Field of study: Computer Science