Description
One of the most pronounced issues affecting the management of fisheries today is bycatch, or the unintentional capture of non-target species of marine life. Bycatch has proven to be detrimental for many species, including marine megafauna and pelagic fishes. One method of reducing bycatch is illuminated gillnets, which involves utilizing the differences in biological visual capabilities and behaviors between species of bycatch and target fish catch. To date, all studies conducted on the effects of net illumination on bycatch and target fish catch have been conducted at night. In this study, the effects of net illumination on bycatch, target fish catch, and market value during both night and day periods at Baja California Sur, Mexico were compared. It was found that i) net illumination is effective (p < 0.05) at reducing bycatch of finfish during the day and at night, ii) net illumination at night is more effective (p < 0.05) at reducing bycatch for elasmobranchs, Humboldt squid, and aggregate bycatch than during the day, iii) time of day did not have an effect (p > 0.05) on sea turtle bycatch, and iv) net illumination did not significantly (p > 0.05)affect target catch or market value at night or during the day. These results suggest that net illumination may be an effective strategy for reducing finfish bycatch in fisheries that operate during the day or across 24 h periods, and is especially effective for reducing elasmobranch, Humboldt squid, and total bycatch biomass at night.
Details
Title
- Effects of Day-night Net Illumination on Bycatch, Target Catch, and Market Value in Coastal Gillnet Fisheries
Contributors
- Denton, Kyli Elise (Author)
- Senko, Jesse (Thesis advisor)
- Neuer, Susanne (Thesis advisor)
- Pratt, Stephen (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2021
- Field of study: Biology