Description
One persisting problem in Massive Open Online Courses (MOOCs) is the issue of student dropout from these courses. The prediction of student dropout from MOOC courses can identify the factors responsible for such an event and it can further initiate intervention before such an event to increase student success in MOOC. There are different approaches and various features available for the prediction of student’s dropout in MOOC courses.In this research, the data derived from the self-paced math course ‘College Algebra and Problem Solving’ offered on the MOOC platform Open edX offered by Arizona State University (ASU) from 2016 to 2020 was considered. This research aims to predict the dropout of students from a MOOC course given a set of features engineered from the learning of students in a day. Machine Learning (ML) model used is Random Forest (RF) and this model is evaluated using the validation metrics like accuracy, precision, recall, F1-score, Area Under the Curve (AUC), Receiver Operating Characteristic (ROC) curve. The average rate of student learning progress was found to have more impact than other features. The model developed can predict the dropout or continuation of students on any given day in the MOOC course with an accuracy of 87.5%, AUC of 94.5%, precision of 88%, recall of 87.5%, and F1-score of 87.5% respectively. The contributing features and interactions were explained using Shapely values for the prediction of the model. The features engineered in this research are predictive of student dropout and could be used for similar courses to predict student dropout from the course. This model can also help in making interventions at a critical time to help students succeed in this MOOC course.
Details
Title
- Predicting Student Dropout in Self-Paced MOOC Course
Contributors
- Dominic Ravichandran, Sheran Dass (Author)
- Gary, Kevin (Thesis advisor)
- Bansal, Ajay (Committee member)
- Cunningham, James (Committee member)
- Sannier, Adrian (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2021
- Field of study: Software Engineering