Full metadata
The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to explore this new region of flight. The goal of the X-2 was to gather data on high Mach Number and high-altitude flight as well as aerodynamic heating. The X-2 had poor lateral stability resulting in it being unstable at high Mach Numbers and moderate angles of attack. The program was full of new and unforeseen technical challenges resulting in many delays and tragedies. The program ended when stability problems resulted in a fatal crash destroying the aircraft and killing the test pilot. This case study addresses the historical background of the program, human influence, the stability problems encountered and conducting a stability analysis of the aircraft. To conduct the stability analysis, the potential flow solver, VORLAX, was used to gather aerodynamic coefficient data of the X-2 and determine if these stability problems could be determined from the data obtained. By comparing the results from VORLAX to a wind tunnel study, I determined that the poor lateral directional stability and control coupling issues were foreseeable in the initial design.
- Obrien, Kevin (Author)
- Takahashi, Timothy (Thesis director)
- Nullmeyer, Robert (Committee member)
- Barrett, The Honors College (Contributor)
- Mechanical and Aerospace Engineering Program (Contributor)
- 2021-11-08 11:21:21
- 2022-01-28 04:06:43
- 2 years 9 months ago