158771-Thumbnail Image.png
Description
All biological processes like cell growth, cell differentiation, development, and aging requires a series of steps which are characterized by gene regulation. Studies have shown that gene regulation is the key to various traits and diseases. Various factors affect the

All biological processes like cell growth, cell differentiation, development, and aging requires a series of steps which are characterized by gene regulation. Studies have shown that gene regulation is the key to various traits and diseases. Various factors affect the gene regulation which includes genetic signals, epigenetic tracks, genetic variants, etc. Deciphering and cataloging these functional genetic elements in the non-coding regions of the genome is one of the biggest challenges in precision medicine and genetic research. This thesis presents two different approaches to identifying these elements: TreeMap and DeepCORE. The first approach involves identifying putative causal genetic variants in cis-eQTL accounting for multisite effects and genetic linkage at a locus. TreeMap performs an organized search for individual and multiple causal variants using a tree guided nested machine learning method. DeepCORE on the other hand explores novel deep learning techniques that models the relationship between genetic, epigenetic and transcriptional patterns across tissues and cell lines and identifies co-operative regulatory elements that affect gene regulation. These two methods are believed to be the link for genotype-phenotype association and a necessary step to explaining various complex diseases and missing heritability.


Download restricted.
Download count: 3

Details

Title
  • Fine Mapping Functional Noncoding Genetic Elements Via Machine Learning
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Biomedical Informatics 2020

    Machine-readable links