Description
The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security countermeasures, can lead to security policy and service level agreement violations. In this thesis, I explore the research questions 1) how to model attacker-defender interactions for multi-stage attacks? 2) how to efficiently deploy proactive (MTD) security countermeasures in a software-defined environment for single and multi-stage attacks? 3) how to verify the effects of security and management policies on the network and take corrective actions?
I propose a Software-defined Situation-aware Cloud Security framework, that, 1) analyzes the attacker-defender interactions using an Software-defined Networking (SDN) based scalable attack graph. This research investigates Advanced Persistent Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel graph partitioning algorithm to generate an attack graph quickly and efficiently. 2) models single-stage and multi-stage attacks (APTs) using the game-theoretic model and provides SDN-based MTD countermeasures. I propose a Markov Game for modeling multi-stage attacks. 3) introduces a multi-stage policy conflict checking framework at the SDN network's application plane. I present INTPOL, a new intent-driven security policy enforcement solution. INTPOL provides a unified language and INTPOL grammar that abstracts the network administrator from the underlying network controller's lexical rules. INTPOL develops a bounded formal model for network service compliance checking, which significantly reduces the number of countermeasures that needs to be deployed. Once the application-layer policy conflicts are resolved, I utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies and resolves rule-order dependencies and conflicts between security policies.
I propose a Software-defined Situation-aware Cloud Security framework, that, 1) analyzes the attacker-defender interactions using an Software-defined Networking (SDN) based scalable attack graph. This research investigates Advanced Persistent Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel graph partitioning algorithm to generate an attack graph quickly and efficiently. 2) models single-stage and multi-stage attacks (APTs) using the game-theoretic model and provides SDN-based MTD countermeasures. I propose a Markov Game for modeling multi-stage attacks. 3) introduces a multi-stage policy conflict checking framework at the SDN network's application plane. I present INTPOL, a new intent-driven security policy enforcement solution. INTPOL provides a unified language and INTPOL grammar that abstracts the network administrator from the underlying network controller's lexical rules. INTPOL develops a bounded formal model for network service compliance checking, which significantly reduces the number of countermeasures that needs to be deployed. Once the application-layer policy conflicts are resolved, I utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies and resolves rule-order dependencies and conflicts between security policies.
Details
Title
- Software-defined Situation-aware Cloud Security
Contributors
- Chowdhary, Ankur (Author)
- Huang, Dijiang (Thesis advisor)
- Kambhampati, Subbarao (Committee member)
- Doupe, Adam (Committee member)
- Bao, Youzhi (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Subjects
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Computer Science 2020