Description
This work solves the problem of incorrect rotations while using handheld devices.Two new methods which improve upon previous works are explored. The first method
uses an infrared camera to capture and detect the user’s face position and orient the
display accordingly. The second method utilizes gyroscopic and accelerometer data
as input to a machine learning model to classify correct and incorrect rotations.
Experiments show that these new methods achieve an overall success rate of 67%
for the first and 92% for the second which reaches a new high for this performance
category. The paper also discusses logistical and legal reasons for implementing this
feature into an end-user product from a business perspective. Lastly, the monetary
incentive behind a feature like irRotate in a consumer device and explore related
patents is discussed.
uses an infrared camera to capture and detect the user’s face position and orient the
display accordingly. The second method utilizes gyroscopic and accelerometer data
as input to a machine learning model to classify correct and incorrect rotations.
Experiments show that these new methods achieve an overall success rate of 67%
for the first and 92% for the second which reaches a new high for this performance
category. The paper also discusses logistical and legal reasons for implementing this
feature into an end-user product from a business perspective. Lastly, the monetary
incentive behind a feature like irRotate in a consumer device and explore related
patents is discussed.
Details
Title
- irRotate - Automatic Screen Rotation Based on Face Orientation using Infrared Cameras
Contributors
- Tallman, Riley (Author)
- Yang, Yezhou (Thesis advisor)
- Liang, Jianming (Committee member)
- Chen, Yinong (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Resource Type
Collections this item is in
Note
- Masters Thesis Computer Science 2020