158694-Thumbnail Image.png
Description
In conventional supervised learning tasks, information retrieval from extensive collections of data happens automatically at low cost, whereas in many real-world problems obtaining labeled data can be hard, time-consuming, and expensive. Consider healthcare systems, for example, where unlabeled medical images

In conventional supervised learning tasks, information retrieval from extensive collections of data happens automatically at low cost, whereas in many real-world problems obtaining labeled data can be hard, time-consuming, and expensive. Consider healthcare systems, for example, where unlabeled medical images are abundant while labeling requires a considerable amount of knowledge from experienced physicians. Active learning addresses this challenge with an iterative process to select instances from the unlabeled data to annotate and improve the supervised learner. At each step, the query of examples to be labeled can be considered as a dilemma between exploitation of the supervised learner's current knowledge and exploration of the unlabeled input features.

Motivated by the need for efficient active learning strategies, this dissertation proposes new algorithms for batch-mode, pool-based active learning. The research considers the following questions: how can unsupervised knowledge of the input features (exploration) improve learning when incorporated with supervised learning (exploitation)? How to characterize exploration in active learning when data is high-dimensional? Finally, how to adaptively make a balance between exploration and exploitation?

The first contribution proposes a new active learning algorithm, Cluster-based Stochastic Query-by-Forest (CSQBF), which provides a batch-mode strategy that accelerates learning with added value from exploration and improved exploitation scores. CSQBF balances exploration and exploitation using a probabilistic scoring criterion based on classification probabilities from a tree-based ensemble model within each data cluster.

The second contribution introduces two more query strategies, Double Margin Active Learning (DMAL) and Cluster Agnostic Active Learning (CAAL), that combine consistent exploration and exploitation modules into a coherent and unified measure for label query. Instead of assuming a fixed clustering structure, CAAL and DMAL adopt a soft-clustering strategy which provides a new approach to formalize exploration in active learning.

The third contribution addresses the challenge of dynamically making a balance between exploration and exploitation criteria throughout the active learning process. Two adaptive algorithms are proposed based on feedback-driven bandit optimization frameworks that elegantly handle this issue by learning the relationship between exploration-exploitation trade-off and an active learner's performance.


Download restricted.

Details

Title
  • Active Learning with Explore and Exploit Equilibriums
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Industrial Engineering 2020

    Machine-readable links