Description
Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these multi-scale interactions encode a great deal of information about distant objects, surfaces, and physical phenomena. For some remote sensing applications, obtaining a desired quantity of interest does not necessitate the explicit mapping of each point in object space to an image space with lenses or mirrors. Instead, only edge rays or physical boundaries of the sensing instrument are considered, while the spatial intensity distribution of optical energy received from a distant object informs its position, optical characteristics, or physical/chemical state.
Admittedly specialized, the principals and consequences of non-imaging optics are nevertheless applicable to heterogeneous semiconductor integration and automotive light detection and ranging (LiDAR), two important emerging technologies. Indeed, a review of relevant engineering literature finds two under-addressed remote sensing challenges. The semiconductor industry lacks an optical strain metrology with displacement resolution smaller than 100 nanometers capable of measuring strain fields between high-density interconnect lines. Meanwhile, little attention is paid to the per-meter sensing characteristics of scene-illuminating flash LiDAR in the context of automotive applications, despite the technology’s much lower cost. It is here that non-imaging optics offers intriguing instrument design and explanations of observed sensor performance at vastly different length scales.
In this thesis, an effective non-contact technique for mapping nanoscale mechanical strain fields and out-of-plane surface warping via laser diffraction is demonstrated, with application as a novel metrology for next-generation semiconductor packages. Additionally, object detection distance of low-cost automotive flash LiDAR, on the order of tens of meters, is understood though principals of optical energy transfer from the surface of a remote object to an extended multi-segment detector. Such information is of consequence when designing an automotive perception system to recognize various roadway objects in low-light scenarios.
Admittedly specialized, the principals and consequences of non-imaging optics are nevertheless applicable to heterogeneous semiconductor integration and automotive light detection and ranging (LiDAR), two important emerging technologies. Indeed, a review of relevant engineering literature finds two under-addressed remote sensing challenges. The semiconductor industry lacks an optical strain metrology with displacement resolution smaller than 100 nanometers capable of measuring strain fields between high-density interconnect lines. Meanwhile, little attention is paid to the per-meter sensing characteristics of scene-illuminating flash LiDAR in the context of automotive applications, despite the technology’s much lower cost. It is here that non-imaging optics offers intriguing instrument design and explanations of observed sensor performance at vastly different length scales.
In this thesis, an effective non-contact technique for mapping nanoscale mechanical strain fields and out-of-plane surface warping via laser diffraction is demonstrated, with application as a novel metrology for next-generation semiconductor packages. Additionally, object detection distance of low-cost automotive flash LiDAR, on the order of tens of meters, is understood though principals of optical energy transfer from the surface of a remote object to an extended multi-segment detector. Such information is of consequence when designing an automotive perception system to recognize various roadway objects in low-light scenarios.
Details
Title
- Harnessing Multiscale Nonimaging Optics for Automotive Flash LiDAR and Heterogenous Semiconductor Integration
Contributors
- Houghton, Todd Kristopher (Author)
- Yu, Hongbin (Thesis advisor)
- Jiang, Hanqing (Committee member)
- Jayasuriya, Suren (Committee member)
- Zhang, Liang (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Electrical Engineering 2020