Description
Imagery data has become important for civil infrastructure operation and
maintenance because imagery data can capture detailed visual information with high
frequencies. Computer vision can be useful for acquiring spatiotemporal details to
support the timely maintenance of critical civil infrastructures that serve society. Some
examples include: irrigation canals need to maintain the leaking sections to avoid water
loss; project engineers need to identify the deviating parts of the workflow to have the
project finished on time and within budget; detecting abnormal behaviors of air traffic
controllers is necessary to reduce operational errors and avoid air traffic accidents.
Identifying the outliers of the civil infrastructure can help engineers focus on targeted
areas. However, large amounts of imagery data bring the difficulty of information
overloading. Anomaly detection combined with contextual knowledge could help address
such information overloading to support the operation and maintenance of civil
infrastructures.
Some challenges make such identification of anomalies difficult. The first challenge is
that diverse large civil infrastructures span among various geospatial environments so
that previous algorithms cannot handle anomaly detection of civil infrastructures in
different environments. The second challenge is that the crowded and rapidly changing
workspaces can cause difficulties for the reliable detection of deviating parts of the
workflow. The third challenge is that limited studies examined how to detect abnormal
behaviors for diverse people in a real-time and non-intrusive manner. Using video andii
relevant data sources (e.g., biometric and communication data) could be promising but
still need a baseline of normal behaviors for outlier detection.
This dissertation presents an anomaly detection framework that uses contextual
knowledge, contextual information, and contextual data for filtering visual information
extracted by computer vision techniques (ADCV) to address the challenges described
above. The framework categorizes the anomaly detection of civil infrastructures into two
categories: with and without a baseline of normal events. The author uses three case
studies to illustrate how the developed approaches can address ADCV challenges in
different categories of anomaly detection. Detailed data collection and experiments
validate the developed ADCV approaches.
maintenance because imagery data can capture detailed visual information with high
frequencies. Computer vision can be useful for acquiring spatiotemporal details to
support the timely maintenance of critical civil infrastructures that serve society. Some
examples include: irrigation canals need to maintain the leaking sections to avoid water
loss; project engineers need to identify the deviating parts of the workflow to have the
project finished on time and within budget; detecting abnormal behaviors of air traffic
controllers is necessary to reduce operational errors and avoid air traffic accidents.
Identifying the outliers of the civil infrastructure can help engineers focus on targeted
areas. However, large amounts of imagery data bring the difficulty of information
overloading. Anomaly detection combined with contextual knowledge could help address
such information overloading to support the operation and maintenance of civil
infrastructures.
Some challenges make such identification of anomalies difficult. The first challenge is
that diverse large civil infrastructures span among various geospatial environments so
that previous algorithms cannot handle anomaly detection of civil infrastructures in
different environments. The second challenge is that the crowded and rapidly changing
workspaces can cause difficulties for the reliable detection of deviating parts of the
workflow. The third challenge is that limited studies examined how to detect abnormal
behaviors for diverse people in a real-time and non-intrusive manner. Using video andii
relevant data sources (e.g., biometric and communication data) could be promising but
still need a baseline of normal behaviors for outlier detection.
This dissertation presents an anomaly detection framework that uses contextual
knowledge, contextual information, and contextual data for filtering visual information
extracted by computer vision techniques (ADCV) to address the challenges described
above. The framework categorizes the anomaly detection of civil infrastructures into two
categories: with and without a baseline of normal events. The author uses three case
studies to illustrate how the developed approaches can address ADCV challenges in
different categories of anomaly detection. Detailed data collection and experiments
validate the developed ADCV approaches.
Details
Title
- Context Integration for Reliable Anomaly Detection from Imagery Data for Supporting Civil Infrastructure Operation and Maintenance
Contributors
- Chen, Jiawei (Author)
- Tang, Pingbo (Thesis advisor)
- Ayer, Steven (Committee member)
- Yang, Yezhou (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020