Full metadata
Title
Coordinating Individual Behavior in Collective Processes; Seed Choice in Harvester Ants (Pogonomyrmex californicus)
Description
Social animals benefit from the aggregation of knowledge and cognitive processing power. Part of this benefit comes from individual heterogeneity, which provides the basis to group-level strategies, such as division of labor and collective intelligence. In turn, the outcomes of collective choices, as well as the needs of the society at large, influence the behavior of individuals within it. My dissertation research addresses how the feedback between individual and group-level behavior affects individuals and promotes collective change. I study this question in the context of seed selection in the seed harvester ant, Pogonomyrmex californicus. I use both field and laboratory studies to explore questions relating to individual behavior: how forager decision-making is affected through information available in the nest and at the seed pile; how workers interact with seeds in the nest; and how forager preferences diverge from each other’s and the colony’s preference. I also explore the integration between individual and colony behavior, specifically: how interactions between the foraging and processing tasks affect colony collection behavior; how individual behavior changes affect colony preference changes and whether colony preference changes can be considered learning behavior. To answer these questions, I provided colonies with binary choices between seeds of unequal or similar quality, and measured individual, task group, and colony-level behavior. I found that colonies are capable of learning to discriminate between seeds, and learned information lasts at least one month without seed interaction outside of the nest. I also found that colony learning was coordinated by foragers receiving updated information from seeds in the nest to better discriminate and make choices between seed quality during searches for seeds outside of the nest. My results show that seed processing is essential for stimulating collection of novel seeds, and that foraging and processing are conducted by behaviorally and spatially overlapping but distinct groups of workers. Finally, I found that foragers’ preferences are diverse yet flexible, even when colonies are consistent in their preference at the population level. These combined experiments generate a more detailed and complete understanding of the mechanisms behind the flexibility of collective colony choices, how colonies incorporate new information, and how workers individually and collectively make foraging decisions for the colony in a decentralized manner.
Date Created
2020
Contributors
- Bespalova, Ioulia Ivanovna (Author)
- Fewell, Jennifer (Thesis advisor)
- Hölldobler, Bert (Committee member)
- Liebig, Jürgen (Committee member)
- Pinter-Wollman, Noa (Committee member)
- Pratt, Stephen (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
140 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57195
Level of coding
minimal
Note
Doctoral Dissertation Biology 2020
System Created
- 2020-06-01 08:19:28
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats