Description
Climate change is increasing global surface temperatures, intensifying droughts and increasing rainfall variation, particularly in drylands. Understanding how dryland plant communities respond to climate change-induced rainfall changes is crucial for implementing effective conservation strategies. Concurrent with climate change impacts on drylands is woody encroachment: an increase in abundance of woody plant species in areas formerly dominated by grasslands or savannahs. For example, the woody plant, Prosopis velutina (velvet mesquite), has encroached into grasslands regionally over the past century. From an agricultural perspective, P. velutina is an invasive weed that hinders cattle forage. Understanding how P. velutina will respond to climate change-induced rainfall changes can be useful for management and conservation efforts. Prosopis velutina was used to answer the following question: Is there a significant interactive effect of mean soil water moisture content and pulse frequency on woody seedling survival and growth in dryland ecosystems? There were 256 P. velutina seedlings sourced from the Santa Rita Experimental Range in southern Arizona grown under four watering treatments where mean and pulse frequency were manipulated over two months. Data were collected on mortality, stem height, number of leaves, instantaneous gas exchange, chlorophyll fluorescence, biomass, and the leaf carbon to nitrogen (C:N) ratio. Mortality was low across treatments. Pulse frequency had less impact across response variables than the mean amount of water received. This may indicate that P. velutina seedlings are relatively insensitive to rainfall timing and are more responsive to rainfall amount. Prosopis velutina in the low mean soil moisture treatments lost a majority of their leaves and had greater biomass allocation to roots. Prosopis velutina’s ability to survive in low soil moisture conditions and invest in root biomass can allow it to persist as drylands are further affected by climate change. Prosopis velutina could benefit ecosystems where native plants are at risk due to rainfall variation if P. velutina occupies a similar niche space. Due to conflicting viewpoints of P. velutina as an invasive species, it’s important to examine P. velutina from both agricultural and conservation perspectives. Further analysis on the benefits to P. velutina in these ecosystems is recommended.
Download count: 2
Details
Title
- Physiological Response to Environmental Stress in Drylands Ecosystems: Examining Prosopis velutina Seedling Responses to Temporal Water Availability Gradients
Contributors
- Davis, Ashley R. (Author)
- Throop, Heather (Thesis advisor)
- Hultine, Kevin (Committee member)
- Sala, Osvaldo (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2020
Subjects
Resource Type
Collections this item is in
Note
-
Masters Thesis Plant Biology and Conservation 2020