Full metadata
Title
Reconfigurable Solar Array Interface for Maximum Power Extraction in Spacecrafts
Description
The efficiency of spacecraft’s solar cells reduces over the course of their operation. Traditionally, they are configured to extract maximum power at the end of their life and not have a system which dynamically extracts the maximum power over their entire life. This work demonstrates the benefit of dynamic re-configuration of spacecraft’s solar arrays to access the full power available from the solar panels throughout their lifetime. This dynamic re-configuration is achieved using enhancement mode GaN devices as the switches due to their low Ron and small footprint.
This work discusses hardware Implementation challenges and a prototype board is designed using components-off-the-shelf (COTS) to study the behavior of photovoltaic (PV) panels with different configurations of switches between 5 PV cells. The measurement results from the board proves the feasibility of the idea, showing the power improvements of having the switch structure. The measurement results are used to simulate a 1kW satellite system and understand practical trade-offs of this idea in actual satellite power systems.
Additionally, this work also presents the implementation of CMOS controller integrated circuit (IC) in 0.18um technology. The CMOS controller IC includes switched-capacitor converters in open loop to provide the floating voltages required to drive the GaN switches. Each CMOS controller IC can drive 10 switches in series and parallel combination. Furthermore, the designed controller IC is expected to operate under 300MRad of total dose radiation, thus enabling the controller modules to be placed on the solar cell wings of the satellites.
This work discusses hardware Implementation challenges and a prototype board is designed using components-off-the-shelf (COTS) to study the behavior of photovoltaic (PV) panels with different configurations of switches between 5 PV cells. The measurement results from the board proves the feasibility of the idea, showing the power improvements of having the switch structure. The measurement results are used to simulate a 1kW satellite system and understand practical trade-offs of this idea in actual satellite power systems.
Additionally, this work also presents the implementation of CMOS controller integrated circuit (IC) in 0.18um technology. The CMOS controller IC includes switched-capacitor converters in open loop to provide the floating voltages required to drive the GaN switches. Each CMOS controller IC can drive 10 switches in series and parallel combination. Furthermore, the designed controller IC is expected to operate under 300MRad of total dose radiation, thus enabling the controller modules to be placed on the solar cell wings of the satellites.
Date Created
2019
Contributors
- Heblikar, Anand N (Author)
- Kitchen, Jennifer (Thesis advisor)
- Bakkaloglu, Bertan (Committee member)
- Ozev, Sule (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
67 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.55652
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2019
System Created
- 2020-01-14 09:19:33
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats