Description
Transportation plays a significant role in every human's life. Numerous factors, such as cost of living, available amenities, work style, to name a few, play a vital role in determining the amount of travel time. Such factors, among others, led in part to an increased need for private transportation and, consequently, leading to an increase in the purchase of private cars. Also, road safety was impacted by numerous factors such as Driving Under Influence (DUI), driver’s distraction due to the increase in the use of mobile devices while driving. These factors led to an increasing need for an Advanced Driver Assistance System (ADAS) to help the driver stay aware of the environment and to improve road safety.
EcoCAR3 is one of the Advanced Vehicle Technology Competitions, sponsored by the United States Department of Energy (DoE) and managed by Argonne National Laboratory in partnership with the North American automotive industry. Students are challenged beyond the traditional classroom environment in these competitions, where they redesign a donated production vehicle to improve energy efficiency and to meet emission standards while maintaining the features that are attractive to the customer, including but not limited to performance, consumer acceptability, safety, and cost.
This thesis presents a driver assistance system interface that was implemented as part of EcoCAR3, including the adopted sensors, hardware and software components, system implementation, validation, and testing. The implemented driver assistance system uses a combination of range measurement sensors to determine the distance, relative location, & the relative velocity of obstacles and surrounding objects together with a computer vision algorithm for obstacle detection and classification. The sensor system and vision system were tested individually and then combined within the overall system. Also, a visual and audio feedback system was designed and implemented to provide timely feedback for the driver as an attempt to enhance situational awareness and improve safety.
Since the driver assistance system was designed and developed as part of a DoE sponsored competition, the system needed to satisfy competition requirements and rules. This work attempted to optimize the system in terms of performance, robustness, and cost while satisfying these constraints.
EcoCAR3 is one of the Advanced Vehicle Technology Competitions, sponsored by the United States Department of Energy (DoE) and managed by Argonne National Laboratory in partnership with the North American automotive industry. Students are challenged beyond the traditional classroom environment in these competitions, where they redesign a donated production vehicle to improve energy efficiency and to meet emission standards while maintaining the features that are attractive to the customer, including but not limited to performance, consumer acceptability, safety, and cost.
This thesis presents a driver assistance system interface that was implemented as part of EcoCAR3, including the adopted sensors, hardware and software components, system implementation, validation, and testing. The implemented driver assistance system uses a combination of range measurement sensors to determine the distance, relative location, & the relative velocity of obstacles and surrounding objects together with a computer vision algorithm for obstacle detection and classification. The sensor system and vision system were tested individually and then combined within the overall system. Also, a visual and audio feedback system was designed and implemented to provide timely feedback for the driver as an attempt to enhance situational awareness and improve safety.
Since the driver assistance system was designed and developed as part of a DoE sponsored competition, the system needed to satisfy competition requirements and rules. This work attempted to optimize the system in terms of performance, robustness, and cost while satisfying these constraints.
Download count: 1
Details
Title
- Driver Assistance System and Feedback for Hybrid Electric Vehicles Using Sensor Fusion
Contributors
- Balaji, Venkatesh (Author)
- Karam, Lina J (Thesis advisor)
- Papandreou-Suppappola, Antonia (Committee member)
- Yu, Hongbin (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Subjects
Resource Type
Collections this item is in
Note
-
Masters Thesis Electrical Engineering 2019