Full metadata
Title
Controlled Epigenetic Silencing and Tandem Histone-Binding Transcriptional Activation
Description
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. In 2011, Haynes et al. showed that a synthetic regulator called the Polycomb chromatin Transcription Factor (PcTF), a fusion protein that binds methylated histones, reactivated an artificially-silenced luciferase reporter gene. These synthetic transcription activators are derived from the polycomb repressive complex (PRC) and associate with the epigenetic silencing mark H3K27me3 to reactivate the expression of silenced genes. It is demonstrated here that the duration of epigenetic silencing does not perturb reactivation via PcTF fusion proteins. After 96 hours PcTF shows the strongest reactivation activity. A variant called Pc2TF, which has roughly double the affinity for H3K27me3 in vitro, reactivated the silenced luciferase gene by at least 2-fold in living cells.
Date Created
2019
Contributors
- Vargas, Daniel A. (Author)
- Haynes, Karmella (Thesis advisor)
- Wang, Xiao (Committee member)
- Mills, Jeremy (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
58 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.55622
Level of coding
minimal
Note
Masters Thesis Biological Design 2019
System Created
- 2020-01-14 09:18:29
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats