Full metadata
Title
Synthesis and applications of nanostructured zeolites from geopolymer chemistry
Description
Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20 zeolite framework types have been synthesized in the form of nanocrystallites and their scalable synthesis has yet to be developed and understood. Geopolymers, claimed to be “amorphous cousins of zeolites”, are a class of ceramic-like aluminosilicate materials with prominent application in construction due to their unique chemical and mechanical properties. Despite the monolith form, geopolymers are fundamentally nanostructured materials and contain zeolite nanocrystallites.
Herein, a new cost-effective and scalable synthesis of various types of nanocrystalline zeolites based on geopolymer chemistry is presented. The study includes the synthesis of highly crystalline discrete nanorods of a CAN zeolite framework structure that had not been achieved hitherto, the exploration of the Na−Al−Si−H2O kinetic phase diagram of hydrogels that gives SOD, CAN and FAU nanocrystalline zeolites, and the discovery of a unique formation mechanism of highly crystalline nanostructured FAU zeolite with intermediate gel products that possess an unprecedented uniform distribution of elements. This study demonstrated the possibility of using high-concentration hydrogels for the synthesis of nanocrystalline zeolites of additional framework structures.
Moreover, a comprehensive study on nanostructured FAU zeolites ion-exchanged with Ag+, Zn2+, Cu2+ and Fe2+ for antibacterial applications is presented, which comprises metal ion release kinetics, antibacterial properties, and cytotoxicity. For the first time, superior metal ion release performance was confirmed for the nanostructured zeolites compared to their micron-sized counterparts. The metal ion-exchanged FAU nanostructured zeolites were established as new effective antibacterial materials featuring their unique physiochemical, antibacterial, and cytotoxic properties.
Herein, a new cost-effective and scalable synthesis of various types of nanocrystalline zeolites based on geopolymer chemistry is presented. The study includes the synthesis of highly crystalline discrete nanorods of a CAN zeolite framework structure that had not been achieved hitherto, the exploration of the Na−Al−Si−H2O kinetic phase diagram of hydrogels that gives SOD, CAN and FAU nanocrystalline zeolites, and the discovery of a unique formation mechanism of highly crystalline nanostructured FAU zeolite with intermediate gel products that possess an unprecedented uniform distribution of elements. This study demonstrated the possibility of using high-concentration hydrogels for the synthesis of nanocrystalline zeolites of additional framework structures.
Moreover, a comprehensive study on nanostructured FAU zeolites ion-exchanged with Ag+, Zn2+, Cu2+ and Fe2+ for antibacterial applications is presented, which comprises metal ion release kinetics, antibacterial properties, and cytotoxicity. For the first time, superior metal ion release performance was confirmed for the nanostructured zeolites compared to their micron-sized counterparts. The metal ion-exchanged FAU nanostructured zeolites were established as new effective antibacterial materials featuring their unique physiochemical, antibacterial, and cytotoxic properties.
Date Created
2019
Contributors
- Chen, Shaojiang (Author)
- Seo, Dong Kyun (Thesis advisor)
- Trovitch, Ryan (Committee member)
- Thomas, MaryLaura Lind (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xxi, 232 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.55529
Statement of Responsibility
by Shaojiang Chen
Description Source
Viewed on November 17, 2020
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2019
bibliography
Includes bibliographical references (pages 175-189)
Field of study: Chemistry
System Created
- 2020-01-14 09:14:09
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats