Full metadata
Title
The effect of defects on functional properties of niobium for superconducting radio-frequency cavities: a first-principles study
Description
Niobium is the primary material for fabricating superconducting radio-frequency (SRF) cavities. However, presence of impurities and defects degrade the superconducting behavior of niobium twofold, first by nucleating non-superconducting phases and second by increasing the residual surface resistance of cavities. In particular, niobium absorbs hydrogen during cavity fabrication and promotes precipitation of non-superconducting niobium hydride phases. Additionally, magnetic flux trapping at defects leads to a normal conducting (non-superconducting) core which increases surface resistance and negatively affects niobium performance for superconducting applications. However, undelaying mechanisms related to hydride formation and dissolution along with defect interaction with magnetic fields is still unclear. Therefore, this dissertation aims to investigate the role of defects and impurities on functional properties of niobium for SRF cavities using first-principles methods.
Here, density functional theory calculations revealed that nitrogen addition suppressed hydrogen absorption interstitially and at grain boundaries, and it also decreased the energetic stability of niobium hydride precipitates present in niobium. Further, hydrogen segregation at the screw dislocation was observed to transform the dislocation core structure and increase the barrier for screw dislocation motion. Valence charge transfer calculations displayed a strong tendency of nitrogen to accumulate charge around itself, thereby decreasing the strength of covalent bonds between niobium and hydrogen leading to a very unstable state for interstitial hydrogen and hydrides. Thus, presence of nitrogen during processing plays a critical role in controlling hydride precipitation and subsequent SRF properties.
First-principles methods were further implemented to gain a theoretical perspective about the experimental observations that lattice defects are effective at trapping magnetic flux in high-purity superconducting niobium. Full-potential linear augmented plane-wave methods were used to analyze the effects of magnetic field on the superconducting state surrounding these defects. A considerable amount of trapped flux was obtained at the dislocation core and grain boundaries which can be attributed to significantly different electronic structure of defects as compared to bulk niobium. Electron redistribution at defects enhances non-paramagnetic effects that perturb superconductivity, resulting in local conditions suitable for flux trapping. Therefore, controlling accumulation or depletion of charge at the defects could mitigate these tendencies and aid in improving superconductive behavior of niobium.
Here, density functional theory calculations revealed that nitrogen addition suppressed hydrogen absorption interstitially and at grain boundaries, and it also decreased the energetic stability of niobium hydride precipitates present in niobium. Further, hydrogen segregation at the screw dislocation was observed to transform the dislocation core structure and increase the barrier for screw dislocation motion. Valence charge transfer calculations displayed a strong tendency of nitrogen to accumulate charge around itself, thereby decreasing the strength of covalent bonds between niobium and hydrogen leading to a very unstable state for interstitial hydrogen and hydrides. Thus, presence of nitrogen during processing plays a critical role in controlling hydride precipitation and subsequent SRF properties.
First-principles methods were further implemented to gain a theoretical perspective about the experimental observations that lattice defects are effective at trapping magnetic flux in high-purity superconducting niobium. Full-potential linear augmented plane-wave methods were used to analyze the effects of magnetic field on the superconducting state surrounding these defects. A considerable amount of trapped flux was obtained at the dislocation core and grain boundaries which can be attributed to significantly different electronic structure of defects as compared to bulk niobium. Electron redistribution at defects enhances non-paramagnetic effects that perturb superconductivity, resulting in local conditions suitable for flux trapping. Therefore, controlling accumulation or depletion of charge at the defects could mitigate these tendencies and aid in improving superconductive behavior of niobium.
Date Created
2019
Contributors
- Garg, Pulkit (Author)
- Solanki, Kiran N (Thesis advisor)
- Jiao, Yang (Committee member)
- Oswald, Jay (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xiii, 97 pages : color illustrations
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.55489
Statement of Responsibility
by Pulkit Garg
Description Source
Viewed on November 9, 2020
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2019
bibliography
Includes bibliographical references (pages 80-93)
Field of study: Materials science and engineering
System Created
- 2020-01-14 09:12:56
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats